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2 CONTENTS

Abstract

This paper presents a study of the fault-tolerant distributed clock synchronisation used in the FlexRay

distributed network protocol, which is currently under development. This algorithm is meant to keep the

clocks synchronized with low error margins. Extra messages are not used. Instead the frames sent in a

TDMA time pattern are observed. The algorithm provides both rate and offset correction. The study focuses

on the offset correction part of the algorithm. The rate correction has been investigated in [Müller2001]. It is

shown that a faulty node cannot shift the start of a cycle beyond known limits both in the byzantine and non-

byzantine case. Sufficent convergence is obtained provided that some conditions are satisfied. Algorithmic

issues of the used variant of the FTA decision function are dealt with in [Study A4-2].
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4 2 SYSTEM MODEL

1 Introduction

FlexRay is a network protocol for use in automotive environments. It features real time, as well as fault

tolerance capabilities. FlexRay works in comunication cycles, which are in general devided into a static and

a dynamic part. The static part works in a TDMA fashion which means that time slots are formed to manage

the bus arbitration. This introduces the need of a known time base for all participating nodes. In FlexRay

a distributed time base is used. Every node uses its own local hardware oscillater which has to synchronize

to other clocks in the network in regular intervals, to prevent e.g. collisions on the bus. FlexRay contains

a distributed clock synchronization algorithm consisting of two parts: a rate and an offset correction. This

paper investigates the FlexRay method for offset correction. It is based on the work by the FlexRay Group, in

particular [PWD 0.6.0], [Müller2001] and [ReqSpec2].

Another concept is discussed in [Kopetz]. Concepts in comparision to FlexRay are discussed in [Rushby2001]

and [Kopetz2001].

2 System Model

FlexRay is a network consisting of a set N of nodes ni, with i 2 f1; : : : ; jN jg. The physical layer network

consists of two broadcast channels A, B. All nodes are connected to either one or both channels. This is

represented by a function CH : N 7�! fA;B;ABg. In FlexRay time measurement is done by measuring

the arrival times of sync frames. Sync frames can only be sent once per cycle by sync masters S � N . The

”sync slaves” 1 are passive participiants to the FlexRay clock synchronization algorithm. While sync slaves

may be connected to only one channel, sync masters are always connected to both channels, this means that

8ni 2 S : CH(ni) = AB. Nodes connected to both channels use the minimum of the values measured via

channels A and B. Implications of this principle are dealt with in section 4.6.

All nodes in a FlexRay network use a hardware oscillator with a fixed frequency as clock. As basis for all

clocks, t denotes the real time, which is used throughout this paper as ”perfect” reference clock, and as a

comparable time base for the local clock time in different controllers. Real time may be measured e.g. in

units of nanoseconds or bit time. The notion of a local time is built on top of microticks. Microticks have a

nominal length in real time. The real length of a microtick varies through inaccurencies of the local hardware

oscillators. In FlexRay the nominal time in units of bit time may be different for different clocks. This is

necessary for balancing the timing of oscillators of known different qualities.

The time in FlexRay is counted in notions of macroticks and cycles. A macrotick is defined as a nominal

number of microticks. In the same manner cycles are defined through macroticks. The clock synchronization

is responsible for two different conditions to hold: First, all cycles in all clocks should have approximately

the same duration in real time. The rate correction is responsible for this. Second, the difference in real time

between the points in time when a particular clock time is reached by different clocks should be as small as

possible which is the job of the offset corrections. To achive this the clock synchronization has to work in

1This is not official FlexRay terminology.
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notions of microticks. Synchronization through offset correction is done each double cycle. The correction

value is derived from the measurement of the sync masters clocks. These measurements are done differently

for rate and offset correction. While rate correction observes both cycles and uses the deviation between the

measurements in both cycles, offset correction measures only once the time distances between remote clocks

and its own clock. This measurement is performed once in the second cycle of a double cycle. Let z be

the length of one cycle in microticks. This value may vary each double cycle since rate correction adapts

the clock speed by stretching or shortening the cycle through changing the number of microticks. Since this

investigation focuses on the invariant that has to hold for offset correction through a double cycle, this fact is

not relevant. The effects of rate correction can be taken into account by a lower inaccuracy of a local clock.

The synchronization in a local node is done after 2z microticks. In general this is not done at the same points

in real time.

In this investigation a worst case scenario is assumed with two clocks s and f with the maximum real time

distance at every clock time, with s the slowest and f the fastest clock. The purpose of the offset correction

is to keep the real time distance of all clocks in given bounds after correction every second cycle. Therefore

an invariant condition must be fulfilled.

3 The Algorithm

In this section the offset correction part of the FlexRay clock synchronization is described. The algorithm is

split up into three phases. First the measurement is done every second cycle. The measured values are the

input to the calculation phase, which gives a correction value which is applied in the network silence phase

at the end of the double cycle. All calculations in the nodes are done in local clock time. The basics of the

clock synchronization in general are discussed in [Lynch88], [Lynch96], [Tel00], [SchWeiss] and [Lönn99].

A comparision between several algorithms is found in [AncPua98].

[PfSchwHe99] and [PalGra92] shows example verification of clock synchronization in time-triggered context.

3.1 Measurement

All nodes use their clocks to calculate the time when the frames from all other nodes are expected. Typically

the frame is not received at that time. The difference of the actual arrival time and the expected time is

taken as clock difference between sender and receiver. This is done only for sync frames in the second

cycle of the double cycle. The sync frame experiences a delay on the physical layer network. This causes

a measurement error. To keep this as low as possible, the delay is compensated by a value which is derived

from the minimum known delay a frame may exhibit between two nodes. 2 These values are highly dependant

on the network topology. Important factors are for example wire length, number of star couplers to pass and

internal transceiver delays.

The resulting value is the measurement value M i;j by which node ni 2 N is measuring a sync node nj 2 S.

2At the time of writing this was not finally decided. Another possibility is to use the half of the expected maximum delay.
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Number of values k-value

1 . . . 2 0

3 . . . 7 1

� 8 2

Table 1: Adaptive k-value selection

Mi;i is the ”difference” to the own local clock which is always zero: M i;i = 0.

3.2 Calculation

After the static part every (fault free) node has a vector of measurement values. This is used to calculate a

correction value. For this purpose the FTA (Fault Tolerant Midpoint Algorithm) as described in [Lynch88] is

used.

This method is defined for jSj � 3F + 1 clocks with F the maximum number of tolerated faults. After

sorting the vector of measurement values the F smallest and F greatest values are deleted. The maximum

and minimum of the values left are taken, and the arithmetic average of these values, called mid-value FTA i,

is taken as correction value for node n i.

For FlexRay this algorithm was slightly modified to adapt the number of values to be deleted (the k-value)

to the number of measurement values in the vector. Table 1 shows how the k-value is selected. While it is

possible to use these values in the case of benign faults, it is important to point out that k is not always equal

to F . With three values it is not possible to tolerate arbitrary faults. On the other hand with more than six

values it is in general possible to tolerate two faults. By using k = 1 in the case of seven values, as chosen

in FlexRay, only one fault can be tolerated, although the generally proven formula jSj � 3F + 1 allows for

double fault tolerance in this case (jSj = 7, F = 2). For further discussions on this topic see [Study A4-2].

3.3 Correction

The offset correction is done at the end of the double cycle during the network silence phase. The strategy is

to shorten or extend the length of the macroticks by a correction value expressed in a number of microticks.

The modification of the length of one macrotick is limited. The microticks have to be distributed over the first

few macroticks in the network silence phase. Extending macroticks means to halt the clock for a while, while

shorten microticks has the effect of speeding it up for a short span of time.

4 Proof of Convergence

The goal of the FlexRay offset correction algorithm is to synchronize all clocks every two cycles. To proof

the correctness (which means sufficient convergence) of the offset correction algorithm a worst case scenario
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is considered. The initial conditions are presented first, and then the steps measurement and correction are

investigated. The goal is an invariant condition that has to be fulfilled to prevent the clocks from divergence.

Sync slaves are not considered in this scenario, because they are no active participants and do not influence

other clocks in correction value calculation. The properties of the offset correction in conjunction with sync

slaves is discussed in section 4.5. The consequences of the presence of two channels are discussed in sec-

tion 4.6.

All symbols used in this section are summerized in appendix D.

4.1 Preconditions

Ci(t) represents the local clock time of clock i at real time t, and T i(c) the inverse function. The real time

distance �i;j(c) = jTi(c)� Tj(c)j between two clocks i and j at a particular clock time c is defined as the

distance of the points in real time when the local clocks are reaching clock time value c. In this scenario

the earliest clock f which starts the new cycle is considered to be the fastest, the last clock s is considered

to be the slowest. It is pointet out, that s and f exhibit the most extremal behaviours which still satisfy the

specification for faultless clocks. The real time when the clocks f and s start the cycle are given by T f (0) and

Ts(0), respectively. The initial maximum distance of all clocks is defined as �0 = �s;f (0).

Let ri be the inaccuracy of a clock i. The inaccuracy (typically expressed in ppm: parts per million) is defined

as the relative deviation of clock speed to the progress of real time. For a perfect clock r i = 0 holds. An

inaccuracy ri = �0:0001 characterizes a clock which is 100 ppm too slow. The maximum inaccuracy r is

defined as r = maxi2Ffrig, where F � N is the set of faultfree nodes.

To convert a portion of real time to a local clocks’ value, the factor 
 i = 1 + ri is defined for clock i. To do

the conversion from a local clock time to real time the factor � i = 1
1+ri

is introduced. With these definitions

the local clock time for a clock i is

Ci(t) = 
it� 
iTi(0) (1)

with the inverse function

Ti(c) = �i(c� Ci(0)) (2)

where

Ci(0) = �
iTi(0) (3)

To achive the worst case scenario rs = �rf = �r is assumed. This makes 
s = 1� r and �s = 1
1�r as well

as 
f = 1 + r and �f = 1
1+r . The behaviour of clocks s and f is illustrated by a diagram in appendix B.

4.2 Measurement

In the worst case scenario the measurement takes place right at the beginning of the cycle so that the measured

values are most likely to get inaccurate. While measuring the distance between the expected and the actual
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arrival time the signal experiences a real time delay d i;j on the physical layer network, when the signal is

sent from node nj to receiver node ni. Generally this value varies from transmission to transmission. Let

d = maxi;jfdi;jg. This is compensated by a value o, defined in the system configuration (typically expressed

by a number of microticks). The local expected signal arrival time in a clock i is z, the duration of the first

cycle within the double cycle. Assuming the measurement right at the beginning of the second cycle is most

pessimistic, because this may lead to the maximum inaccuracy at the end of the second cycle. Transformed to

real time, the sender nj sends its signal at time Tj(z). With delay and compensation the measurement value

Mi;j of a clock i measuring a clock j is

Mi;j = Ci(Tj(z) + di;j)� z � o (4)

In appendix B an example is given: the measurement Mf;s, where the fastest clock f measures the slowest

clock s. The measurement error �i of measuring node ni is the uncompensated portion of the delay in real

time. Note that �i can be both positive or negative, depending whether the delay is partially or overly com-

pensated. This depends on the compensation method. According to (5) the extremal values of � i, denoted

by �min and �max, respectively, depend on the variation of the delay d i;j and the value of the compensa-

tion o. To be independent from the compensation method, let �min = min
�
0; �1; : : : ; �jN j

	
and similar

�max = max
�
0; �1; : : : ; �jN j

	
be the set of all measrement errors.

A special case exists where sync master ni measures itself. In this case the result of the measurement is set to

Mi;i = 0.

�i = di;j � �io (5)

This can be used to get to an alternative formula for M i;j .

Mi;j = Ci(Tj(z) + di;j)� z � o

= 
iTj(z) + 
idi;j � 
iTi(0)� Ci(Ti(z))� 
i�io

= 
i(Tj(z)� Ti(0) + �i)� 
i(Ti(z)� Ti(0))

Mi;j = 
i(Tj(z)� Ti(z) + �i) (6)

If the measuring clock i is faster than the measured clock j, then it reaches z earlier than clock j. This means

Ti(z) < Tj(z) and thus Tj(z) � Ti(z) > 0. From this inequality we can conclude the tendency: A clock

i which has observed mainly positive measurements M i;j should be slowed down. A sufficient number of

negative measurements will cause a speed up of clock i instead. See section 4.3 for details on correction.

Since �i may vary it can become �min or �max. By Mi;j;min we denote the measurement value Mi;j with a

measurement error of �min. Mi;j;max is defined accordingly.
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4.3 Correction

The maximum distance of clocks i and j after two cycles is defined as �1 = �i;j(2z). After applying the

correction value FTAi in clock time the clock i starts its next cycle at real time Ui = Ti(2z + FTAi). After

correction the distance of clocks i and j is changed to �2 = jUs � Uf j at most.

In FlexRay the calculated number of microticks is distributed during the network idle time. While the clocks

are still inaccurate in this process, the real time �iFTAi passess. This effect is also taken into account by the

definition of Ui.

4.4 Convergence

To show convergence 3F + 1 clocks are needed, where F is the maximum number of faults to be tolerated.

To obtain the worst case, i.e. the maximum difference between U f and Us, the following scenario is assumed:

The number of sync masters is exactly 3F+1. A group of F+1 faultfree clocks are all slowest and completely

identical to each other. Furthermore, a group of F � 1 faulty clocks are slowest as well. Hence, at least one

(faulty or faultless) clock q besides clock s is slowest. q and s are two different elements in the group of

slowest clocks. A further group of F faultfree clocks are all fastest and completely identical to each other.

Clock f belongs to this group. A single faulty clock p is fastest and sends its signal such that it is accepted

by clock f , but ignored by clock s. In all, these are 3F + 1 clocks. After clock s has removed F smallest

and F greatest measurements only slowest clocks are left. FTAs decides to follow the slowest clocks by

appliying a very small local offset correction FTAs � 0. After clock f has removed F smallest and F

greatest measurements a group of slowest and one fastest clocks are left. Consequently, FTA f decides to

follow the average of the two by applying a local offset correction of FTA f �
Mf;s

2 .

Now the distance between s and f can be greater than just FTAf , because s and f ”might have seen the world

from different viewpoints”. This means: The measurement errors for s and f can be maximally different such

that the difference between s and f is enlarged. This value is �f as shown in (5), because the compensation

in realtime is lower since clock f is faster.

Based on this worst case scenario we calculate Uf and Us.

Uf = Tf (2z + FTAf )

= Tf (2z) + �fFTAf

It is assumed that the fastest clock p causes the worst case measurement error �min when measured by the

fastest clock f , and that the slowest clock q causes the worst case measurement error �max when measured by

the slowest clock s. To achive maximum distance after correction the minimum measurement error is chosen

for FTAf which will lead to the maximum �2. With the definition of �i, 
i and equations (6) the real time

of the beginning of the new double cycle of f is:

Uf = Tf (2z) + �f
Mf;p;min +Mf;s;min

2
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= Tf (2z) + �f

f �min + 
f (Ts(z)� Tf (z) + �min)

2

= Tf (2z) +
Ts(z)� Tf (z)

2
+ �min

= Tf (2z) +
z

1�r �
z

1+r + Ts(0)� Tf (0)

2
+ �min

= Tf (2z) +
�sz � �f z +�0

2
+ �min (7)

To achieve maximum �2 clock q is chosen as input to the correction value calculation, with

Ms;q;max = 
s�max. A further slowest clock with the same behaviour as q is named v.

Us = Ts(2z) + �sFTAs

= Ts(2z) + �s
Ms;v;max +Ms;q;max

2

= Ts(2z) + �s

s2�max

2
= Ts(2z) + �max (8)

To achieve convergence the following condition � 2 = ��0 with � < 1 has to be fullfilled. For this worst

case scenario (8) and (7) are put together by the definition of � 2.

�2 = Us � Uf

= Ts(2z) + �max � Tf (2z)�
�0 + �sz � �fz

2
� �min

= Ts(2z)� Tf (2z)�
(�s � �f )z

2
�

�0

2
+ �max � �min

= (�s � �f )2z +�0 �
(�s � �f )z

2
�

�0

2
+ �max � �min

= (�s � �f )
3z

2
+

�0

2
+ �max � �min (9)

Convergence can be achieved if �2 < �0.

(�s � �f )
3z

2
+

�0

2
+ �max � �min < �0

(�s � �f )
3z

2
+ �max � �min <

�0

2
(�s � �f )3z + 2(�max � �min) < �0 (10)

Inequation (10) shows the quality of the correction depending on the span �max � �min of the measurement

error, the cycle length z and the drift. The expression � s � �f is a function of the maximum drift r:

�s � �f =
1

1� r
�

1

1 + r

=
2r

1� r2
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Using this equation we can rewrite (10) as follows:

�0 >
6rz

1� r2
+ 2(�max � �min) (11)

By �1 the upper bound for the distance of the clocks is given.

�1 = Ts(2z)� Tf (2z)

= (�s � �f )2z +�0

> (�s � �f )5z + 2(�max � �min)

=
10rz

1� r2
+ 2(�max � �min) (12)

4.5 Offset correction with sync slaves

By definition a fault free sync slave a =2 S operates with an inaccuracy ra with rs � ra � rf . In this case

convergence can be achieved, if the condition (10) holds. But consider a clock s 0 which is the slowest sync

master with respect to the actual situation. In contrast to s, clock s 0 needs not be maximally slowest with

respect to the requirements to faultless nodes. Clocks f 0 and f have to be distinguished in an analoguous way.

A problem may arise if sync slave a is itself slower than s 0 or faster than f 0.

Now it is shown which conditions have to be fulfilled to synchronize a clock a slower than s 0. The conditions

for the opposite case (”a is faster than f”) are similar.

A worst case scenario is built similar to the scenario in section 4.4. Clock a measures F values higher

than Ma;s0 . Since s is the slowest fault free sync master, there are no more than F measured values lower

than Ma;s0 . Consequently the highest and the lowest value in this scenario is Ma;s0;max and Ma;q0;max =

Ma;s0;max, q0 6= s0, if another value is available. With choosing the slowest sync master for correction value

calculation the absolute minimal possible correction is made for a clock slower than s 0.

The clock a ends its clock time cycle after correction at real time Ua.

Ua = Ta(2z) + �a
Ma;s0;max +Ma;q0;max

2
= Ta(2z) + �aMa;s0;max

= �a2z + Ta(0)� �az � Ta(0) + Ts0(z) + �max

= �az + Ts0(z) + �max

Let �0 = Ta(0) � Tf (0) be the initial distance between clocks a and f . To achive convergence � 2 =

Ua � Uf < �0 has to be satisfied.

Ua � Uf =
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�az + Ts0(z) + �max � Tf (2z)�
�sz � �fz +�0

2
� �min =

�az �
2�f2z

2
+ Ts0(z)� Tf (0)�

�sz � �fz +�0

2
+ �max � �min =

�az �
3

2
�fz �

1

2
�sz �

�0

2
+ Ts0(z)� Tf (0) + �max � �min =

�az �
3

2
�f z �

1

2
�sz �

Ts(0) + Tf (0)

2
+ Ts0(z) + �max � �min < �0 (13)

Note that the most pessimistic situation can be achieved if a is the slowest faultfree clock (ra = �r) and the

lowest possible correction value applies. This situation occurs if ns0 = ns. This makes �a = �s = �s0 and

Ts0 = Ts. This simplifies the above equation:

�az �
3

2
�fz �

1

2
�sz �

Ts(0) + Tf (0)

2
+ Ts0(z) + �max � �min

=
1

2
�sz �

3

2
�fz + �sz + Ts(0)�

Ts(0) + Tf (0)

2
+ �max � �min

=
3z

2
(�s � �f ) +

�0

2
+ �max � �min

As expected, this is exactly the same as (9). Consequently the same conclusions can be drawn as in (10)

and (12).

4.6 Clock synchronization in a double channel system

In the investigation above it was not taken into account that there are two channels in the physical layer

network. This comes into play by the fact that sync masters can completely ignore one channel, since always

the minimum measurement value of the two channels is taken.

To show the impact on clock synchronization different cases are considered:

1. If both channels operate at nearly the same speed, no problem arises.

2. If the speed on one channels differs by a significant difference � the clock synchronization runs on

only one channel. In this case, sync slaves connected to the slower channel exclusively, expierence a

difference of � in the measurement errors. It is clear that � has to be small enough to keep these sync

slaves synchronized.

Although clock synchronization works perfectly, the problem in case 2 may arise. Note that a faulty slower

channel can increase �. A faulty faster channel can increase the delay up to � which affects also the sync

masters for the following reason: Some messages may be received from both channels. Then the replica from

the faster channel is measured. Some other messages may be partially corrupted on the faster channel, such

that some receivers measure the replica from the faster, others from the slower channel. In any case, � directly

influences the measurement error and thus must be kept sufficiently small - even in the presence of faults !
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r �0 �1

1 50 ppm 60 84

2 100 ppm 96 144

3 250 ppm 204 324

4 500 ppm 384 624

5 1500 ppm 1104 1824

Table 2: Influence of the clock inaccuracy with fixed cycle length z = 120000 and �min = 0, �max = 12

z �0 �1

1 60000 60 84

2 120000 96 144

3 240000 168 264

4 480000 312 504

Table 3: Influence of the cycle length with fixed inaccuracy r = 100ppm and �min = 0, �max = 12

5 Offset Correction: Examples

The following tables show some example configurations, and the corresponding limits � 0 and �1. All values

are nominal microticks, which have a fixed length in nanoseconds, except r which is given in ppm. r repre-

sents the clock inaccuracy and z the duration of a cycle. Remember, that � 1 shows the state after a double

cycle. The � parameters represent properties of the current topology.

Table 2 shows the influence of the clock inaccuracy r on the guaranteed precision of the offset correction. The

value for �max may represent a topology with three cascaded star couplers.

In table 3 different cycle lengths are assumed. These essentially consist of a static part with a fixed number of

slots with the same length, a fixed sized dynamic part if present and a network idle time.

In table 4 a different topology is considered. For simplification it is assumed that a star coupler hop takes

approximately four nominal microticks. Other sources of delays have to be compensated likewise. Case 2

shows the influence of overcompensation. In case 4 the compensation value was chosen too low.

Number of
star couplers �min �max �0 �1

1 1 0 0 72 120

2 2 -2 6 88 136

3 3 0 8 88 136

4 3 2 12 92 140

Table 4: Influence of the topology with fixed inaccuracy r = 100ppm and cycle length z = 120000
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6 Investigation of rate correction effects

6.1 Introducing rate correction into the existing model

This section discusses offset correction under the assumption of a limited gradient of the clock speed.

The FlexRay rate correction (see [Müller2001]) is an additional clock correction algorithm, using the same

measurement, selection and correction calculation algorithm each cycle. In contrast to the offset correction,

the measurement is done twice in a double cycle. The rate is calculated by taking the difference of both

calculated values. To apply the rate correction, the following double cycle is enlarged or shortened by the

result of the rate correction algorithm, i.e. it takes more or less microticks to finish a double cycle.

The rate correction part of the clock synchronization causes the deviations of clock speeds of all clocks to be

bounded by a small constant at the beginning of a double cycle. In contrast to previous sections, the speed of

the extremal clocks s and f is considered to be time dependant. The absolute maximum and minimum of all

clocks are still given by 
f and 
s. If 
i(t) denotes the current speed of clock i at real time t, the following

condition holds for every non-faulty clock:

1� r = 
s � 
i(t) � 
f = 1 + r (14)

The worst case in this scenario is given by two clocks f and s with the maximum real time distance at the

beginning of the current cycle and the maximum and minimum initial speed 
 f (0) and 
s(0). The initial

speed of both clocks is not necessarly 
f or 
s since they represent the result of the latest rate correction.

If 
� � 2r is the maximum difference in speed of all clocks after rate correction, the effect of the rate

correction at the beginning of the double cycle at real time 0 can be expressed as follows.

��
0s � 
0f
�� � 
� (15)

With this definition 
� expresses the quality of the rate correction.

If the clocks could accelerate and slow down without limit the clock speed of the slowest and fastest clocks

could gain their maximum/minimum values — in the worst case, immediately after cycle start. In this scenario

all results of further scenarios apply without changes. In a realistic scenario the acceleration _
 i(t) of the clocks

is bounded by a constant value �. In this case the following condition applies.

�� � _
i(t) � � (16)

� is a property of faultfree oscillators rather than of the rate correction algorithm. The worst case scenario is

now splitted into two phases. In the first phase the clocks needs some time to gain the overall maximum or

minimum speed. In the second phase the clocks keep their current speed, because they cannot drift further by

definition of a faultfree clock. This is illustrated in figure 1.

It is also possible that the double cycle ends before the second phase begins. Since the worst case scenario

assumes maximum clock differences, the acceleration of the fastest clock is assumed to be maximum, while
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γ

γ
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t + γf
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T

T 1
f

1
s

Figure 1: Minimum and maximum speed limits in a model with acceleration.

the acceleration of the slowest clock is assumed to be minimum.

This means that the fastest clock speeds up by �t, while the slowest clock slows down by ��t in the first

phase. The current speed of the fastest and slowest clocks in the first phase can be expressed as follows.

@f (t) = 
0f + �(t� Tf (0)) (17)

@s(t) = 
0s � �(t� Ts(0)) (18)

At real time T 1
f and T 1

s the fastest and slowest clock are ending their first phase. This is the time when @f (t)

becomes 
f and @s(t) becomes 
s.


f = 
0f + �(T 1
f � Tf (0))

T 1
f =


f � 
0f
�

+ Tf (0) (19)


s = 
0s � �(T 1
s � Ts(0))

T 1
s =


0s � 
s
�

+ Ts(0) (20)

Depending on acceleration the calculation of the local clock time changes. Equations (21) and (22) are

showing the clock time of clocks f and s in phase one.

C1
f (t) =

Z t

Tf (0)

@f (t
0) dt0



16 6 INVESTIGATION OF RATE CORRECTION EFFECTS

= 
0f (t� Tf (0)) + �

�
1

2
(t� Tf (0))

2 � Tf (0) (t� Tf (0))

�
(21)

C1
s (t) =

Z t

Ts(0)

@s (t
0) dt0

= 
0s (t� Ts(0))� �

�
1

2
(t� Ts(0))

2 � Ts(0) (t� Ts(0))

�
(22)

If t > T 1
f the linear expression 
f

�
t� T 1

f

�
has to be added. Putting this together the local clock value for

clock f at real time t is given by the following expression.

Cf (t) =

(

0f (t� Tf (0)) + �( 12 (t� Tf (0))

2 � Tf (0)(t� Tf (0))); if t � T 1
f ;


0f (T
1
f � Tf (0)) + �( 12 (T

1
f � Tf (0))

2 � Tf (0)(T
1
f � Tf (0))) + 
f (t� T 1

f ); if t > T 1
f .

(23)

The same applies for clock s.

Cs(t) =

(

0s (t� Ts(0))� �( 12 (t� Ts(0))

2 � Ts(0)(t� Ts(0)); if t � T 1
s ;


0s (T
1
s � Ts(0))� �( 12 (T

1
s � Ts(0))

2 � Ts(0)(T
1
s � Ts(0))) + 
s(t� T 1

s ); if t > T 1
s .

(24)

For further calculations we need the inverse function T i(c) = C�1
i (c) which maps clock time c to real time t.

For the first phase the equations 23 and 24 have to be resolved.

Two solutions exist per equation, but only one fulfill the requirement T i(c = 0) = Ti(0):

T 1st
f (c) = �

1

�

�

0f � 2Tf (0)� �

q
(
0f � �Tf (0))2 + 2�c

�
(25)

Now it is possible to express the real time at a particular clock time. The second phase starts at C 1
f = Cf (T

1
f ).

Ti(c) =

�
T 1st
i (c); if c � C1

i ;

T 1
i + �i(c� C1

i ); if c > C1
i .

(26)

Cf (T
1
f ) = 
0f

�
T 1
f � Tf (0)

�
+ �

�
1
2

�
T 1
f � Tf (0)

�2
� Tf (0)

�
T 1
f � Tf (0)

��

= 
0f

�

f�


0

f

�

�2
+ �

��

f�


0

f

2�

�2
� Tf (0)

�

f�


0

f

�

��

= 
0f

�

f�


0

f

�

�2
+

(
f�

0

f )
2

4� � Tf (0)
�

f � 
0f

� (27)

The same applies for clock s.

6.2 Examples

The following scenarios should show, how much limited acceleration and rate correction influence the quality

of clock synchronisation. The maximum distance �1 was roughly estimated and bound by Ts(2z)� Tf (2z).
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The measurement errors �max and �min deviate slightly, by using Mi;j = Ci(Tj(z) � �) � z for calculating

measurement errors.

Table 5 in appendix C shows the parameters used in the example calculations.

Table 6 shows the results of the calculation of the staurization points T 1
f and T 1

s .

The measurement scenario used in table 7 follows the calculation in section 4.2. Clock f measures a fastest

and a slowest clock both with minimum error. Clock s measures two slowest clocks with maximum errors.

Table 7 shows the �1 and �2 values which are of final interest. The last column shows the �1 with unlimited

acceleration. The effect of limited gradient of clock speed can be seen by comparing � 1 with limited and

unlimited acceleration.

7 Conclusion

The above investigation shows that the FlexRay clock synchronization method is able to provide sufficent

convergence with up to F faulty clocks, provided conditions (10) and (13) are satisfied and � is sufficiently

small. With increasing convergence one of the conditions may be violated sooner or later. In case of violating

condition (10) by letting �0 getting too low, �2 will be the upper bound for the distance of slowest and fastest

sync masters in the next cycle (by definition). This process will proceed until condition (10) complies again.

All in all, it is expected that the distance will jump back and forth within these bounds. In any case, and at

any time, the clock difference is bounded by �1 as shown in (12). When limited gradients of clock speed

are assumed the clocks are closer to each other (�1 is smaller) as shown in table 7 (two rightmost columns).

Remark: Rate correction tends to benefit more from limited acceleration, because the drift of a clock during a

cycle is limited. This keeps the overall distance between two clocks in certain boundaries.

Together with [Study A4-2] it can be concluded that FlexRay is able to tolerate benign byzantine faults within

the known bounds, while the tolerance of malicious byzantine faults is limited. FlexRay provides sufficent

convergence of faultfree sync masters and slaves even in the presence of up to F faulty nodes. However, the

time difference � between the two channels must be very small in any case. The question whether the current

hardware solution guarentees a sufficently small � is beyond the scope of this paper. The worst case � in

the presence of faults should be investigated carefully. Sync slaves connected to only one channel may lose

synchronization if this very channel is faulty, of course.

With respect to the algorithmic issues of the FTA variant used here, the reader is referred to [Study A4-2].
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A Startup

Startup issues are beyond the scope of this study. Nevertheless this Appendix contains some remarks con-

cerning startup and the transition from startup to normal clock sync operation.

A.1 Reference to General Definitions

Non-faulty clocks are never faster or slower than the ideal clock �r. If this is the case, and the requirement

of jN j � 3F + 1 clocks with F faulty clocks is satisfied, clock correction is proofed to work correctly in a

running network.

The startup procedure is responsible to adapt the rate of the clocks to meet these requirements.

A fault free clock can accelerate up to the maximum or minimum speed as shown in section 6. If the clocks’

rate is already corrected to operate near the limit 1� r, the clock can accelerate, violating the requirements.

In this model it was assumed that a clock can change its speed by��t. A clock imay drift by� �T i(2z)
�T

�Tnom
,

during s double cycle. The absolute value of these clock speed drifts is bounded by 2r, when a clocks drifts

from slowest to fastest, or from fastest to slowest.3 This is also the maximum distance between the speed 
 0
i

at the beginning of the double cycle and the maximum or minimum speed of a fault free clock. This requires

that the corrected rate 
corri is never greater than 
f � �Ti(2z) during runtime. In normal operation this is

ensured by rate correction.

A.2 Basics of Clock Synchronization Startup

The FlexRay startup procedure introduces a clock in two different ways. The coldstart path is selected, if no

other node is detected to be active. In this case no clock synchronization is needed. If there are active nodes

in the network, the starting node selects the integration path. To synchronize the clock to the active nodes

clocks the following steps are taken:4

1. The node listens, until a valid sync frame of an even cycle (the first cycle in a double cycle) is received.

2. The node waits until the next sync frame with the same id arrives. If this is not the case within a certain

receive window, the node selects another sync frame and retries. The selection of this parameter is dealt

with in [Fuhr02].

3. The node adopts the reference node’s rate.

4. The rest of the cycle is skipped.

5. The node continues to listen on the bus without sending anything. Moreover normal clock synchroniza-

tion (rate and offset correction) takes place. Normal operation starts if a plausibility check is passed.

3Such a behaviour for fault-free clocks would be hazardous for rate correction.
4Only the relevant details for this scenario are present. See [PWD 0.6.0] Chapter 8 for details.



20 A STARTUP

Before a node can perform regular clock synchronization the second sync frame (with the same ID as the first)

is expected within a receive window z�Wearly � Ca
r � z+Wlate, where Ca

r is the arrival time of the second

sync frame (see step 2 above). For a fault free node r applies C a
r = 
hwi (Tr(z)+Ær;i), where Ær;i is the signal

delay between the two nodes, and 
hwi the uncorrected native clock speed.5 W = max fWearly ;Wlateg will

be used as shorthand from now.

This means that the reference clock is only accepted, if

��
hwi Tr(z) + Ær;i � 
hwi T hw
i (z)

�� �W (28)

Provided the arrival of the second sync frame falls into the receive window, the maximum applied rate change

is W=
hwi . If Ær;i > 0, the corrected rate of clock i is now slightly slower than clock r, so 
 c
i = 
r+
hwi Ær;i =


hwi +W=
hwi .

Then, the integrating node proceeds with steps 4 and 5 (see above).

A.3 Transition from Startup to Normal Operation

Many questions concerning startup of the clock synchronization algorithm in principle address the fact that

startup is non-fault-tolerant while normal operation preserves fault tolerance over a long period. Where does

initial fault tolerance come from?

Due to its non-redundant nature the FlexRay startup procedure can be fault-detecting at best. When the

clock of the second integrating node follows the clock of the coldstarter node, any of the two may be faulty.

Consequently, all three cases can happen:

� Both nodes agree on a common time which is acceptable for all faultfree nodes. In this case subsequent

clock synchronization and fault-tolerant normal operation will work correctly.

� Both nodes do not agree on an acceptable time (either by disagreement or by agreeing on the wrong

time). In a recent study, [Fuhr02] has defined a condition which avoids this case if the secondly inte-

grating node is faultfree.

� Both nodes behave in a way that some faultfree nodes accept it as a common time base while other

faultless nodes don’t. Hence, only a subset of the nodes will complete startup successfully. This

scenario is not avoided by the suggestion in [Fuhr02].

In the latter two cases a faulty node may mislead a faultless one. Further countermeasures have to be taken to

prevent adverse effects of misled nodes.

Dynamic behaviour could add further problems. When nodes are in the process of integrating one after the

other, then sudden faults could cause undesired transitions between the three cases. It seems that at least some

of such transitions can be avoided by the condition defined in [Fuhr02]. An investigation in this direction can

be helpful.

5FlexRay introduces a constant rate modification by default. The symbol 
hwi stands for the modified ”hardware” speed,

in [PWD 0.6.0] referred as pMicroT ickOverheadNom.
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One can also think of conditions other than [Fuhr02], which do not require that high oscillator quality. If one

decides for an alternate approach, a deep investigation must follow as well.

The transition from startup (however it is performed) to normal operation of clock synchronization needs

special care. The fault tolerance during normal operation requires redundancy (which is not present during

startup). Consequently, the transition implies a membership problem, which can be solved by an agreement

protocol. If normal operation requires, say n nodes plus s spare nodes, then all faultfree nodes must agree

on the presence of all n + s nodes and their correct time behaviour. In this sense a membership-agreement

protocol can provide the initial fault tolerance.

The three cases above become less critical if the protocol for the agreement on membership has the following

property: If the protocol cannot be executed correctly due to wrong timing of a node, then the failure will be

made obvious to all participating nodes. Even in this early phase protection of the nodes by their guardians is

important. Otherwise a faulty node may exhibit arbitrary deviations in its behaviour at any time.
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B Illustration
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C Results of Section 6.2
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Table 5: Parameters of example calculations. These scenarios include clock acceleration. At the time of this

study realistic values for � have not been available. For this reason arbitrary values have been taken.
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Table 6: Results of example calculations. This table shows the saturation points T 1
f and T 1

s of the clocks,

where the clocks speed hits maximum. The line numbers refer to table 5.
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Table 7: Results of example calculations. The final deviations between the clock can be seen by the values

of �1 (before offset correction) and �2 (after offset correction). All deviations are much smaller than those

in table 2 (where the gradients of clock speed are not limited). The line numbers refer to the line numbers in

table 5.
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D Summary of symbols

N Set of Nodes

ni Node i; ni 2 N

CH FunctionCH : N 7�! fA;B;ABg from set of nodes to set of channel configurations. In configuration

A or B the node is connected to only one channel, AB is a double channel configuration.

S Set of sync masters. S � N .

z Cycle length

s,q,v Worst case scenario slowest clocks. While s measures q, v it expierences different measurement errors.

f ,p Worst case scenario fastest clocks.

Mi;j Value clock i gets by measuring clock j, implicit through observating the frame arrival time on the

bus. This value includes the error through various delays, and the error compensation. The value is

interpreted as a local clocks’ time difference.

F Maximum number of tolerated faults.

k Adapted parameter for FTA. Refer to table 1.

FTAi The mid-value of the minimum and maximum measurement values, after deleting k minimum and

maximum values in clock i.

t A clock value of a reference clock (”real time”) with no inaccuracy.

c A clock time value of a real clock.

Ci(t) Local clock time value of clock i at real time t.

Ti(c) Real time at local clock time of clock i: Ti(Ci(t)) = t.

�i;j(c) Real time distance between two clocks at local time c: �i;j(c) = jTi(c)� Tj(c)j.

�0 Initial real time distance at local clock time c = 0 in clocks s and f : �0 = �s;f (0).

ri Inaccuracy of clock i. For clock s the inaccuracy was chosen to be r s = �r.

r Maximum inaccuracy of all nodes in the network.

F Set of faultfree nodes. F � N


i Scaling factor for conversion of a real time distance to a local clock distance 
 i = 1 + ri.

�i Scaling factor for conversion of a local clock time distance to a real time distance � i = 1
1+ri

.
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di;j Signal transfer delay between clocks i and j.

d Maximum signal transfer delay in the whole network.

o Measurement error compensation value

�i ”Real” measurement error: The portion of the delay that was not compensated in node i.

�min; �max Minimum and maximum measurement error.

�1 Real time difference of clocks s, f after one double cycle: �1 = �s;f (2z).

Ui Real time value of the new cycle start after correction.

�2 Real time distance of clocks s, f after correction: �2 = jUs � Uf j.

a The slowest sync slaves’ clock.

s0 The slowest sync master in the worst case scenario considering a sync slave to be the slowest clock. Need

not to be maximally slowest clock.

f 0 The fastest sync master in the worst case scenario considering a sync slave to be the slowest clock. Need

not to be maximally fastest clock.

�0 Real time distance of a and f similar to �0.

�2 Real time distance of a and f similar to �2.

� Signal transmission speed difference between channel A and B.


i(t) Speed of clock i at real time t.


0i Initial speed of clock i at real time Ti(0).


� Difference between initial speed of clocks s and f .

_
i(t) Acceleration of clock i at real time t.

� Upper bound of acceleration of all clocks.

T 1
i Real time when the speed of clock i reaches maximum or minimum value (end of phase one).

@i(t) Current speed of clock i in the first phase at real time t.

C1
i Clock time at end of phase one.

Ci(t) Clock time at real time t. This function includes phases one and two.

T 1st
i (c) Real time at clock time c in the first phase.
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Ti(c) Real time at clock time c. This function includes phases one and two.


corri Speed of clock i immediatly after rate correction.


hwi Speed of clock i without any correction applied.

Ca
r Arrival time of the second sync frame clock r receives after entering the integration path during startup.

Wearly Start of receive window relative to the cycle length.

Wlate End of receive window relative to the cycle length.

W Maximum number of absolute values of Wearly and Wlate.


