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Abstract: Popular fault-tolerant1 TDMA-based protocols like TT-CAN ([Fu00] and
[Mu02]), TTP ([KG93]) and FlexRay ([Fl02]) are using a static slotting scheme for bus
arbitration. This paper describes a possible solution for a more flexible handling of the
slotting, by providing extra time of variable length in the cycle for additional slots.
These extra time is only provided if it is requested by the controllers in the network.
Another possibility is to configure extra slots statically (to come to a fixed cycle length)
and assign the slots dynamically to different controllers. A new node architecture
is introduced for improving protection of the bus in case of a faulty controller. An
agreement algorithm for determining a new schedule every cycle in the distributed
network is presented. The system is capable of tolerating double-faults (one controller
and one channel).

1 Motivation

In common fault tolerant TDMA-based protocols a time slot is assigned to each com-
munication controller (processing the communication of a node) within a communication
cycle (see figure 1). During fault-tolerant operation, messages are filling a whole slot. The
schedule of the slots, the slots’ lengths and the length of the communication cycles are
statically preconfigured. This assures that all fault-free controllers in a distributed network
can communicate, without using special arbitration techniques like CSMA/CD (eg. CAN,
...). To assure collision-free communication, a guardian prevents faulty controllers from
sending in a slot it is not scheduled for. For redundancy it is common to use a two channel
architecture. In this case, there is one guardian for each channel.

The drawback of this method lies in the fact that controllers are restricted to the order
given by the preconfigured schedule. It is not possible for a controller to send in additional
slots in the current communication cycle, if it needs temporarily higher throughput or
redundant communication. To solve this problem with a TDMA-like protocol it is required
to configure additional individual slots for each controller. This makes the communication
cycle longer. All changes in the static configuration are permanent throughout the runtime
of the network. If a controller needs additional slots rarely, bandwidth is wasted because
the sum of the maximum slot numbers for each controller has to be taken into account. The

1This excludes TDMA-based protocols in wireless and satellite communication, which are not designed for
use in safety critical environments.
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Figure 1: Controllers C1, C2, ... sending messages M1, M2, ... respectively in subsequent time slots
on channels A and B synchronously.

proposed way to solve this problem is to change the length of the communication cycle
dynamically.

This is not feasible in TDMA-based networks with static scheduling for the following
reasons: First, there must be an agreement on a new schedule for all controllers. Second,
not only the controllers, but all the bus guardians have to be informed about the schedule
change independently from the controllers, because a faulty controller may mislead the bus
guardians. The bus guardian is a cheap component, which must know about the current
schedule. To be able to decide when the controller is allowed to send or not, the bus
guardian must agree with all other fault-free nodes. This requires message decoding by
the bus guardians. This makes the bus guardians more complex.

The FlexRay ([Fl02]) protocol introduces a possible solution for the problem. The protocol
works with two different arbitration methods, a statically configured TDMA scheme with
equal-length slots, and a minislotting solution.2 In the minislotting part the schedule is
not fixed, but the length of this part is always the same. Moreover, this part cannot be
protected in an efficient way by guardians, so fault-tolerance is not guaranteed.

2 The New Slotting Scheme

The solution presented in this paper, enables each controller to use one additional slot
within a communication cycle, if needed. All controllers are able to announce that they
need one more slot in the current cycle. These slot reservation requests are collected and
the cycle is increased by the respective number of slots. This should be done in a fault-
tolerant way. The algorithm presented in this paper will be proved to tolerate one faulty
controller together with one faulty channel in a double-channel system. To achieve this,
the communication cycle is splitted into two parts. The first one is the regular part, where
all controllers send at least once. The schedule in this part is fixed as in a static TDMA-
scheme. The second part is the extension part, which consists of all additional requested
slots. If there are no slots requested, the extension part is left out, otherwise the length of

2A similar approach is used in the Byteflight protocol ([BPG00]).



the extension part is the sum of the lengths of the requested slots. After the extension part
is completed, the next communication cycle starts. Figure 2 shows an example.
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Figure 2: A communication cycle with regular and extension part. Two controllers requested a slot
in the extension part.

As replacement for the inflexible bus guardian a new architecture is introduced, where
two controllers are grouped together in a single node, so that a controller can disallow the
other one to send. If a controller fault occurs in such a node, both channels are perfectly
protected by the independent second controller. There is a drawback: A faulty controller
may erroneously prevent a fault-free controller from sending. In this case the node gets
completely disconnected from the network. If the requirements do not allow this, more
redundant controllers or even nodes could be used. In any case the fault tolerance of the
solution proposed here is not worse than single controller solutions. Figure 3 shows the
new architecture. Instead of bus guardians, switches are used to protect the channels.
These switches are not more than driver components which can be turned on or off under
the neighbours control.

3 Discussion of Possible Fault Scenarios

All messages a node sends are assumed to be protected by a checkword (e.g. CRC), so
that message corruption can always be detected. A message can be corrupted, if:

1. it was send corrupted (usually wrong physical coding) by a faulty controller,

2. it was assembled with a invalid checkword by a faulty controller,

3. the transmission was interrupted within a node by the neighbour controller, or

4. the message was corrupted on a faulty channel.
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Figure 3: Two nodes controlling each other. A controller is able to deny its neighbour to send.

If an expected message is missing, this is considered as message corruption, too. Note that
empty slots are not allowed. All slots must be filled with messages or pseudo-messages
(null messages).

A faulty channel can lead to Byzantine faults, if messages with correct checkwords are
delivered only to a subset of all controllers, while other controllers receive corrupted mes-
sages. It is not possible for a faulty channel to change parts of the message without cor-
rupting it or to spontaneously generate messages with correct checkword.

To make all controllers able to guard their neighbours correctly in the extension part, the
schedule in the extension must be agreed by all controllers within the regular part.

3.1 Single-Fault Scenarios

In a single-fault-scenario, there is either one faulty channel or faulty controller.

In case of a faulty channel, a message can be received on the respective other channel.
Since there is no faulty controller, all messages contain a correct reservation request.

In case of a faulty controller without a faulty channel, faults may occur in the time or
value domain. In the time domain, the controller can send out of the bounds of the slot it is
assigned to. This is prevented by the non-faulty neighbour controller. In the value domain
a message can be sent coded correctly or corrupted. This can happen on one channel or on
both channels. The following combinations are possible:

1. Two correctly coded messages are sent on both channels. In this case all fault-free
controllers agree on the information coded within the message.

2. One correctly coded message is sent on one channel, while one corrupted message is



sent on the other. In this case the fault-free controllers cannot distinguish between a
channel and controller fault. Per default they trust in the information they received.

3. Two corrupted messages are received. In this case there must be a pre-defined de-
fault decision.

Note that, as a consequence of the chosen architecture, these types of faults can also be ap-
plied to the neighbour of a faulty controller. A non-faulty neighbour of a faulty controller
can be handled the same way in case of faults.

Some behaviour can only occur in the case of a faulty controller. A faulty controller might
compute a checkword on the basis of a request information which has no relation to the
behaviour of the controller in the extension. Such misleading requests can only be sent
by faulty controllers. Misleading requests are handled as follows: If the fault-free con-
trollers can agree on the request the faulty controller has sent, they adjust their scheduling
as requested. It is the task of the fault-free neighbour to prevent the faulty controller from
sending without permission. If messages are corrupted, or the faulty controller sends con-
tradicting requests on both channels, a pre-defined default rule has to be applied.

For all the scenarios, which have been described so far, the result shows that agreement
can be reached without further activity in either case of one faulty channel or one faulty
controller.

3.2 Double-Fault Scenarios

The double-fault scenario includes one faulty channel, one faulty controller and one fault-
free neighbour controller, which can be blocked by the faulty one. The non-faulty con-
troller, however, protects both channels.

If C is the set of controllers, f is the faulty one and n its neighbour, every controller c can
receive a corrupted message, a misleading request (see section 3.1) or a fault-free message.
On the faulty channel a subset Ns ⊆ C of controllers receive a corrupted message in slot
s. Note that Ns is not constant in different slots. Controllers from C − Ns receive the
message “as is” from a controller (faulty or non-faulty).

As seen before, a faulty controller can behave differently on each channel. This is im-
portant, because the different receivers might come to different conclusions, especially if
one receiver has no usable input and must fall back to a default, and another needs not.
As discussed in the last section, there are two different scenarios where this can happen.
If k ∈ Ns and l /∈ Ns are fault-free receivers, f can send a corrupted message on the
fault-free channel, but a non-corrupted on the faulty one. In this case k must fall back to
a default action (reserve or not reserve a slot), since it sees corrupted messages on both
channels. But l sees the message on one channel, and accepts the request from f . If the
request does not match the default action, k and l disagree. On the other side if f sends
correct messages with different requests, k agrees on the request received but l sees a con-
tradiction.Because l has to fall back to the default value both receivers disagree. Note that
this situation is impossible in the case of n.



For an agreement on this benign Byzantine fault, at least three controllers must broadcast
their decision to the other controllers. In a TDMA-based protocol, this could be the next
three controllers following in the schedule. A problem arises at the end of the regular part.
When the extension starts, the schedule must be fully agreed on.

4 Fault-Tolerant Operation

To solve this problem, two controllers are sending in each slot of the regular part. One
controller sends via channel A, the other controller via channel B. The regular part is
subdivided into two phases. These are called the “request” and “confirmation” phase. The
request phase lasts from slot 1 to m

2 , where m is the (even) number of slots (which is also
the number of controllers in the network). Consequently, the confirmation phase ranges
from slot m

2 + 1 to m. A possible schedule for the regular part would be to schedule
the odd numbered controllers in the request phase on channel A and for the confirmation
phase on channel B, and vice versa for the even numbered controllers. This schedule is
illustrated in figure 4.
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Figure 4: The regular part is split into two phases. In the request phase all controllers send a request
for a slot. In the confirmation phase the requests which were received are sent as vector, by all
controllers.

In the request phase, the controllers send their messages, with a possible request for a
slot in the request field of the message (see figure 4). Each receiver builds up a request
vector, containing the requests of the senders. The possible values appear in section 4.1
as request slot, request no slot or unknown. A field is set to unknown, if
the received message was corrupted. This is possible for senders scheduled on the faulty
channel, for the faulty controller f , if it sends a corrupted message, or its neighbour n, if it
is blocked by f during sending. For these senders, the entries can be different for different
receivers. If a field is not set to unknown for each two receivers for a sender, then the
content of the fields are equal (either request slot or request no slot).

In the confirmation phase the controller sends the request vectors instead of a single re-



quest. Similar to the activities in the request phase, the receivers build a matrix from the set
of received vectors. The resulting matrix is called request matrix (see section 4.1).
Each vector forms a row in this matrix, which is a square matrix with m rows and m
columns. The entry request matrix[i][j] expresses the request of node j received
by node i in the request phase. If a vector could not be received, the whole row is marked
as corrupted.

The matrix is the basis of the agreement algorithm described in detail in section 4.1. The
outcome of this algorithm is a schedule for the extension part. The algorithm tolerates one
faulty controller with arbitrary behaviour (including blocking of its neighbour), and one
faulty channel in addition. This includes that the faulty controller can send a non-corrupted
message carrying a random vector in the confirmation phase.

A row in the matrix is guaranteed not to be corrupted, if the sender is a non-faulty and
non-blocked controller, and was scheduled to send on the fault-free channel. These rows
are the same in every receiving controller. Since the vector can be different for different
controllers, it is not guaranteed, that two rows match. On the other side it is guaranteed,
that the entries in the columns of those controllers, which were scheduled for the fault-free
channel, show either the original request, corrupted (see lemma 2 in section 4.2) or
possibly unknown for controllers n and f . An exception of this is the entry of the row
whose vector origins from f which can send random values in the vector. All in all, there
are at least 4 values per column necessary to come to an agreement, two of them from
non-faulty and non-blocked controllers. This is the reason why there must be at least 8
controllers available in the network.

4.1 An Algorithm for Agreement on the Schedule in the Extension

Each controller has to perform an algorithm to come to a schedule for the extension, using
the information gathered in the regular part. The result must be the same for all fault-free
controllers.

The matrix of received vectors with requests from controllers, the type of a request and
the result schedule vector used in the following are defined below. The values defined in
request are possible entries in the matrix. The first index of the matrix is the row (a
received vector) the second the column. If the entry in the result schedule[c] is
set to true for a particular controller c, then the controller is scheduled in the extension
part.

10 typedef enum { requested_slot, requested_no_slot,
unknown, corrupted } request;

11 request request_matrix[m][m];
12 boolean result_schedule[m];

The function majority(c, channel) returns the majority of requests in the column
for controller c of the matrix. It tolerates one misleading request from a faulty-controller.



This is the reason why the function can return a valid request only, if at least two controllers
vote for one particular value (see line 36 and lemma3 in section 4.2). To determine the
majority, the entries of the column for controller c and a specific channel are used. Each
channel is handled separately, because the results of the faulty and fault-free channel must
be handled differently. For details see section 4.2.

// Defined at configuration time:
// scheduled_for_channel is true, if a controller
// (first index) is scheduled for a specific
// channel (second index) in the confirmation phase.

20 const boolean scheduled_for_channel[m][2];

21 request
22 majority(int c, int channel)
23 {
24 int request_slot_counter = 0;
25 int request_no_slot_counter = 0;

26 for (int i = 0; i < m; i++)
27 {
28 if (scheduled_for_channel[i][channel])
29 {
30 if (request_matrix[i][c] == request_slot)
31 request_slot_counter++;
32 else if (request_matrix[i][c]

== request_no_slot)
33 request_no_slot_counter++;
34 }
35 }
36 if (max (request_slot_counter,

request_no_slot_counter) < 2)
37 return unknown;
38 else if (request_slot_counter

> request_no_slot_counter)
39 return request_slot;
40 else
41 return request_no_slot;
42 }

The following code builds the vector for the schedule in the extension. For all controllers
allowed to send, the value is true. The default value, for a controller, when the scheduling
request could not be determined, is false. The code will be analyzed in section 4.2.
The function count unknown() (see lines 54–58) returns the number of entries set to
unknown for a channel within a column. If this value is greater than one (line 61) for the
channel a controller is scheduled in the confirmation phase, the result is not trustworthy,
and the default value must be applied. The reason is, that, if the number of unknown



entries is too high, the controller has sent on the faulty channel in the request phase. A
scenario is possible where two receivers get different majorities on the faulty channel,
while the majority on the fault-free channel is unknown. On the other side, it is clear in
such a situation, that the controller is sending on the fault-free channel in the confirmation
phase, and slot reservation must be rejected if there are too little information available to
guarantee agreement.

50 for (int i = 0; i < m; i++)
51 {
52 request r_a = majority (i, CHANNEL_A);
53 request r_b = majority (i, CHANNEL_B);
54 int ch_unknown;
55 if (scheduled_for_channel (i, CHANNEL_A))
56 ch_unknown = count_unknown (i, CHANNEL_A);
57 else
58 ch_unknown = count_unknown (i, CHANNEL_B);
59 if (r_a != unknown || r_b != unknown)
60 {
61 if (ch_unknown) > 1)
62 result_schedule[i] = false;
63 else if (r_a == request_slot

&& r_b == request_slot
|| r_a == request_slot && r_b == unknown
|| r_a == unknown && r_b == request_slot)

64 result_schedule[i] = true;
65 else
66 result_schedule[i] = false;
67 }
68 }

4.2 Proof of Correctness

This section shows, that all controllers can agree on a schedule for the extension part.

The set of controllers C is split into the sets D and D = C − D. If c ∈ D, the con-
troller sends on the fault-free channel in one of the slots in the request phase. The func-
tion rq : C 7−→ {×, 1} becomes × if a controller has sent a corrupted message (possi-
ble for n and f ), otherwise 1 (represented in the pseudo code as request slot resp.
request no slot).

The fault-free channel is defined as a function chc(b) = b for message b (a request, or a
vector in the confirmation phase) of controller c. The faulty channel is a function cfc(b) =
× if c ∈ Ns (see section 3.2), or otherwise cfc(b) = b.

At the end of the request phase, any controller c has collected the received messages from
each controller in a vector sgc, where any × are replaced by 0 (in the pseudo code repre-



sented by the constant unknown).

Lemma 1 For any receiver r ∈ C, sgr
i = 1 if i ∈ D and i is neither n nor f . The

number of correctly received request is at least m2 − 2.

If i ∈ D and i is fault-free, then sgri = chi (rc(i)) = 1. This is true for at least m2 − 2
controllers, if both f and n are from D.

In the confirmation phase, sgc is sent with the appropriate message. By definition the
faulty controller f can send a random vector. If f sends another value than the one it has
received i, then sgf

i is set to −1. Note, that only f is able to send an “non-true” value.

After the confirmation phase has passed, any controller has a matrix rmc (appears as
request matrixin the pseudo-code) containing the vectors received with the messages
on the respective channel. If the message of i has been corrupted on the faulty channel,
then the row rmc

i is set to ×. As a consequence, m2 − 2 entries rmc
i 6= × for the same

reason as in lemma 1.

Lemma 2 For any r ∈ C the entry rmr
i,d is 1 or ×, if d ∈ D and i 6= f .

As shown in lemma 1, sgi
d = 1. If i ∈ D, then rmr

i = cfi(sg
i) is either (×, . . . ,×) or

sgi. If i /∈ D, then rmc
i = sgi.

Lemma 3 The function majority(c, channel) returns the original request for the
fault-free, and the original request or unknown for the faulty channel, for any fault-free
controller c ∈ C and receiver r ∈ C. In the case of the fault-free channel the result is the
same for all r.

For cinD, the equation rmr
i,c is 1 for all fault-free i ∈ D or either 1 or × for all i ∈ D

according to lemma 1. If c ∈ D and channel is the fault-free channel, then for all i ∈ D
(scheduled for the fault-free channel in the confirmation phase), then the same request
appears at least m2 − 2 times, which is greater or equal 2, if m ≥ 8 (see line 36 in pseudo
code). In the other case for c ∈ D where channel is the faulty channel and the sum of
the entries with rmr

i,c 6= × is greater or equal three for all i ∈ D, then the worst case,
arises if controller f is fromD, which can send a value sgf

c ∈ −1. So f is outvoted by the
other two controllers, or the condition could not be fulfilled, in which case the return value
is unknown. If c /∈ D, and the channel is fault-free, then this is the similar situation
as for a controller from D on a faulty channel, because rmr

i,c can become 0 instead ×,
which is only possible for the senders f and n. In contrast to the case of a controller from
D, it cannot be guaranteed that the function majority() does not return unknown, even
on the fault-free channel (there may be less than two fault-free controllers receiving a value
from c in the request phase). If channel is the faulty one, then the values for controller
c can be 1, 0 or× (or−1 from f ). Since 0 and× are handled the same way, this is similar
to the case with the fault-free channel. Since the function chc is the identity for all c, the
results are the same for all controllers.



Theorem 1 (Agreement) The result schedule is the same for every receiver r ∈ C. In
addition, it can be guaranteed for all c ∈ D that the slot is reserved if it was requested,
and not reserved if not requested.

According to lemma 3, the function majority(c, channel) returns the same value
for all r if channel is fault-free. The value rmr

i,c = 0 can only appear once (for i = f ),
for c ∈ D in (lemma 1). As a result, if majority(c, channel) returns unknown
for a c ∈ D, c passes the test in line 61. Since there is always a return value other than
unknown on the fault-free channel (lemma 3), result schedule[c] is set to the cor-
rect value in lines 63–67. If c ∈ D, than it is possible, that majority(c, channel)
returns unknown, because at least two entries in the matrix are set to unknown on the
fault-free channel. This is always the channel c is sending on. Such a situation can become
critical (section 4.1 gives an example). In this case, the test in line 61 leads to the default
value for any r. Since this happens on the fault-free channel, this situation is visible to
any r. In the other cases, there can be a majority on the fault-free channel or the result for
both channels is unknown. For the first case the test in line 61 passes, because this is not
the channel, c is sending on. In either case c is handled the same way as if it would be
from D. Controller n is handled as a special case of c ∈ D, because sgrn = 0 for any f ,
if it is blocked by f . Otherwise it behaves like any other fault-free controller. Controller
f behaves either like a normal controller, like n or it sends a contradicting value in the
confirmation phase, in which case f is outvoted in majority(), or the function returns
unknown. It is up to controller n to prevent f from sending if necessary.

5 Slot Overloading

There is also a benefit for applications requiring that all cycles have equal length. For
this type of application, the extension part can have a fixed length, and be filled with
messages by controllers when needed. In contrast to TTP, where the schedule is always
statically configured, the schedule in the extension can be chosen dynamically. In contrast
to FlexRay, where a dynamically chosen schedule is possible in the dynamic segment, the
communication on the channels is always fully protected, so that fault-tolerant operation
is assured.

6 Conclusion

A new algorithm has been developed for dynamically reserving time slots in a TDMA-
based network protocol. The correctness of the algorithm has been proven. The communi-
cation controllers are able to reserve time slots dynamically for spontaneous needs, while
the network is fully protected against wrongly sending faulty nodes. With these properties,
applications can be handled by the protocol in a more efficient way. Exception handling is
an important example, to apply the new slotting scheme. The exchange of information for
the exception handling can be done in the extension part in a complete fault-tolerant way.



This is possible without interrupting the normal stream of messages.
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