Efficiency of Dynamic Arbitration in TDMA Protocols

April 22, 2005

Jens Chr. Lisner University of Duisburg-Essen

Introduction

Arbitration methods in TDMA-based protocols

• fixed schedule of senders configured

- slots have dynamic length
- schedule determined at runtime for every cycle

Introduction

Mixed-mode protocols provide both methods

- Improved flexibility
- Ability to send additional information
- Example: exception handling

Common problem: "babbling idiot" fault

Solution:

Guardians protecting the channels from faulty controllers

- Independent guardians
 Each node has one guardian for each channel.
- Central guardians Guardians reside on a hub and are controlled by a protocol controller.

Controllers guard each other

- Each controller acts as guardian for its neighbour
- Controllers are fully independent
- Controllers serve different hosts

Guaranteed fail-silent behaviour in case of controller faults.

Dependability of Computing Systems

The Tea Protocol

- Mixed-mode media access
 - regular part (static)
 - extension part (dynamic)
- Double-controller architecture
- > Extension schedule is determined in regular part
- "Agreement-based scheduling"
- Fault-tolerant and efficient solution

Time Model

Dependability of Computing Systems

University of Duisburg-Essen

ICB

Minislotting with assigned slots

Pre-configured schedule:

- Controllers are statically assigned to minislots
- Controllers may send or not

Minislotting with assigned slots: Timing constraints for slot of controller f

Minislotting with assigned slots

Minimum minislot length $\lambda_{minislot} \ge 2\Delta_{max} + d_{max} + \varepsilon$ ε small error term (rounding error, descretization, ...)

Slot length if controller is sending

 $\lambda_{message}(i)$ length of message of controller i in real time

$$\lambda_{slot}(i) = \left(\left\lceil \frac{\lambda_{message}(i)}{\lambda_{minislot}} \right\rceil + 1 \right) \lambda_{minislot} \ge 2\lambda_{minislot}$$

Minislotting with assigned slots

 T_{as} Overhead caused by the arbitration method

Minislotting with relaxed timing

Minislotting with relaxed timing

Agreement-based scheduling

dynamic slot length

 δ_{final} not necessary, if message reaches maximum length

Agreement based scheduling

Schedule previously known

Dependa

 \Rightarrow No additional arbitration mechanisms required

- h total number of controllers sending
- k number of controller which do not fully utilize maximum slot length ($k \le h$)

$$T_{ts} = \sum_{h} \left(d_{max} + d_{switch} + \varepsilon \right) + \sum_{k} \delta_{final} + T_{reg}$$

additional overhead in regular part

Tea is able to tolerate double faults

Possible behaviour of ...

- Faulty controller
 - fail-silent
 - corrupted messages
 - "babbling idiot"

- Faulty channel
 - message corruption
 - byzantine behaviour

- Messages corruption
- missing messages
- messages with invalid CRC (or similar protection)

Case 1:

ICB

University of Duisburg-Essen

Dependability of Computing Systems

Case 2:

next sender receives no transmission on faulty channel

follow next sender

Examples

Scenario 1: Maximum utilization

- High Δ_{max} dominates in assigned slots and relaxed timing methods
- Network constants d_{max} and δ_{max} have minimal impact on overhead
- Improve clock synchronization for assigned slots and relaxed timing to reduce overhead

Examples

Scenario 2: Overhead caused by empty slots

- Overhead in assigned slots and relaxed timing grow with number of empty slots (mainly depending on Δ_{max} in longer cycles)
- Constant overhead for agreement-based scheduling

Conclusion

- Efficient solution for mixed-mode TDMA protocols available
- The Tea protocol uses pre-determined schedules for dynamic arbitration
- Agreement method overhead depends mainly on network constants
- Methods with assigned slots and relaxed timing require accurate clocks
- Agreement methods needs additional overhead for majority voting
- Agreement method requires minimum overhead compared to other methods

